
A short introduction to
multi-core, threads

(Adapted from Jernej Barbic)

Threads vs. Processes

• Process:
– Full blown virtual machine

– Has:
• PC, register state,

• In Memory:
– stack, code, data, page table, etc.

– Process context switch = lots of work
• (1000s of ns)

• Thread:
– Multiplexed CPU only

What’s a thread?

• Basic unit of CPU utilization

• Can think of a light weight process

• Consists of:

– Program counter, register set, stack space

– But…

• Shares code, data, OS resources (open files,
etc.) with peer threads

Interest in threads…

• Interest in threads originally stems from
evolution of Symmetric Multiprocessors

– (SMP = fancy name for > 1 CPU)

• SMP:

– Idea became popular 6-7 years ago

• Dual processor SMP more cost effective than 2
uniprocessor boxes

– Dell Workstation 2.4 GHz Intel Xeon = $2584

– 2nd processor = just an additional $434

– Multiple CPUs in a single box sharing
memory, I/O resources

CMP a lot like SMP

• CMP = “chip multiprocessor”

– Another fancy name for multi-core

– Now, technically possible, economical, and
physically necessary to put multiple cores
on 1 chip

Why are CMPs “physically necessary”?

• Idea:

– 2 cores, 2 GHz lead to heat of X

– 1 core, 4 GHz leads to heat of 4X

• From performance perspective

– If you can parallelize code, execution time
on machine 1 is the same as machine 2

• From heat perspective

– Heat of machine 1 is less than machine 2

Context switches

• Threads more easily context switched

– Just registers + PC, not memory
management

– Could run on different processors
concurrently in SMP

• Share CPU in uniprocessor

• Note: Brings up synchronization issues

Example
• Two single threaded applications on 1 machine

Kernel code and data

K
e

rn
e

l

P1: Multi-threaded P2: Single threaded

Code Code Code Code

t1 t2 t3 t1
Have

computational
state (PCs,

registers, etc.)
for each
thread

Another view
Single threaded program Multi-threaded program

Static

Heap

Stack

Code

Static

Heap

Code

Stack

1

Stack

2

Stack

3
…

MT program has per thread stack:
Heap, static, and code are common to all threads

Threads and the OS

• Programs in traditional OS are single
threaded

– 1 PC per program (process), 1 stack, 1 set
of CPU registers

– If process blocks (i.e. disk I/O, NW
communication, etc.) then no progress for
program as a whole

Multi-threaded OS

• Examples:

– Digital unix, Free BSD, Sun Solaris, etc.

• State:

– In ST state contained in a process

– In MT, state contained in multiple threads

• Idea:

– w/MT, if one thread of execution blocks,
can switch to another one without a context
switch

